### **CETIFICATION**

SDG No:

FA34029

Site:

BMSMC - Building 5 Area

Humacao, PR

Laboratory:

Accutest, Florida

Matrix:

Groundwater

### **SUMMARY:**

Water samples (Table 1) were collected on the BRSMC facility — Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 17, 2016 and were analyzed in Accutest, Florida that reported the data under SDG No.: FA34029. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

| SAMPLE ID | SAMPLE<br>DESCRIPTION | MATRIX                   | ANALYSIS PERFORMED |
|-----------|-----------------------|--------------------------|--------------------|
| FA34029-1 | RA3-GWD               | Groundwater              | VOA TCL List       |
| FA34029-2 | RA3D-GWD              | Groundwater              | VOA TCL List       |
| FA34029-3 | BPEB-22               | AQ – Equipment<br>Blank  | VOA TCL List       |
| FA34029-4 | RA3-GWS               | Groundwater              | VOA TCL List       |
| FA34029-5 | TB051716              | AQ – Trip Blank<br>Water | VOA TCL List       |

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 28, 2016

### **SGS Accutest**

### Report of Analysis

Page 1 of 2

Client Sample ID: RA3-GWD

Lab Sample ID: FA34029-1 Matrix:

Method:

AQ - Ground Water

SW846 8260C

Date Sampled: 05/17/16

Date Received: 05/18/16 Percent Solids: n/a

BMSMC, Building 5 Area, Humacao, PR

**Analytical Batch** File ID DF Analyzed By Prep Date Prep Batch J0976603.D 05/18/16 DP VJ5304 Run #1 1 n/a n/a

Run #2

Project:

Purge Volume

Run #1 5.0 ml

Run #2

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL  | Units | Q                      |
|------------|-----------------------------|--------|-----|------|-------|------------------------|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l  |                        |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l  |                        |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l  |                        |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l  |                        |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l  |                        |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l  |                        |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l  |                        |
| 75-15-0    | Carbon Disulfide            | ND     | 2.0 | 0.23 | ug/l  |                        |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l  |                        |
| 108-90-7   | Chlorobenzene               | 0.59   | 1.0 | 0.20 | ug/l  | 1                      |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/l  |                        |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l  |                        |
| 110-82-7   | Cyclohexane                 | 0.54   | 1.0 | 0.26 | ug/l  | J                      |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l  |                        |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l  |                        |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l  |                        |
| 75-71-8    | Dichlorodifluoromethane     | ND     | 2.0 | 0.50 | ug/l  |                        |
| 95-50-1    | 1,2-Dichlorobenzene         | 1.6    | 1.0 | 0.27 | ug/I  |                        |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/l  |                        |
| 106-46-7   | 1,4-Dichlorobenzene         | ND     | 1.0 | 0.39 | ug/l  |                        |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l  |                        |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l  |                        |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l  | - 414                  |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l  | SOCHOO                 |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l  | ALC: NO.               |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l  |                        |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l  | Rafuel Infante         |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l  | Méndez<br>- LIC # 1888 |
| 100-41-4   | Ethylbenzene                | 1.6    | 1.0 | 0.25 | ug/l  |                        |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l  | 100/                   |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l  | night)                 |
| 98-82-8    | Isopropylbenzene            | ND     | 1.0 | 0.33 | ug/l  |                        |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

### 4

### Report of Analysis

Client Sample ID: RA3-GWD

Lab Sample ID: FA34029-1
Matrix: AQ - Groun

AQ - Ground Water

SW846 8260C BMSMC, Building 5 Area, Humacao, PR Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids: n/a

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL     | MDL  | Units | Q |
|------------|-----------------------------|--------|--------|------|-------|---|
| 99-87-6    | p-Isopropyltoluene          | ND     | 1.0    | 0.28 | ug/l  |   |
| 79-20-9    | Methyl Acetate              | ND     | 20     | 5.0  | ug/l  |   |
| 74-83-9    | Methyl Bromide              | ND     | 2.0    | 0.50 | ug/l  |   |
| 74-87-3    | Methyl Chloride             | ND     | 2.0    | 0.50 | ug/l  |   |
| 108-87-2   | Methylcyclohexane           | ND     | 1.0    | 0.23 | ug/l  |   |
| 75-09-2    | Methylene Chloride          | ND     | 5.0    | 2.0  | ug/l  |   |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK) | 1.9    | 5.0    | 1.4  | ug/l  | J |
| 1634-04-4  | Methyl Tert Butyl Ether     | 38.2   | 1.0    | 0.20 | ug/l  | _ |
| 100-42-5   | Styrene                     | ND     | 1.0    | 0.24 | ug/l  |   |
| 75-85-4    | Tert-Amyl Alcohol           | ND     | 20     | 6.0  | ug/l  |   |
| 75-65-0    | Tert-Butyl Alcohol          | 151    | 20     | 9.1  | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33 | ug/l  |   |
| 127-18-4   | Tetrachloroethylene         | ND     | 1.0    | 0.30 | ug/l  |   |
| 109-99-9   | Tetrahydrofuran             | ND     | 5.0    | 1.4  | ug/l  |   |
| 108-88-3   | Toluene                     | ND     | 1.0    | 0.20 | ug/l  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51 | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37 | ug/l  |   |
| 79-01-6    | Trichloroethylene           | ND     | 1.0    | 0.27 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane      | ND     | 2.0    | 0.50 | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20 | ug/l  |   |
| 75-01-4    | Vinyl Chloride              | ND     | 1.0    | 0.31 | ug/l  |   |
|            | m,p-Xylene                  | ND     | 2.0    | 0.30 | ug/l  |   |
| 95-47-6    | o-Xylene                    | ND     | 1.0    | 0.26 | ug/l  |   |
| CAS No.    | Surrogate Recoveries        | Run# 1 | Run# 2 | Limi | its   |   |
| 1868-53-7  | Dibromofluoromethane        | 105%   |        | 83-1 | 18%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4       | 105%   |        | 79-1 | 25%   |   |
| 2037-26-5  | Toluene-D8                  | 104%   |        | 85-1 | 12%   |   |
| 460-00-4   | 4-Bromofluorobenzene        | 104%   |        | 83-1 | 18%   |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

### SGS Accutest

### Report of Analysis

Page 1 of 2

Client Sample ID: RA3D-GWD

Lab Sample ID:

FA34029-2

Matrix: Method: AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids: n/a

Project:

File ID Run #1 J0976604.D

DF 1

Analyzed 05/18/16

By DP Prep Date n/a

Prep Batch n/a

Q

J

j

**Analytical Batch** 

VJ5304

Run #2

**Purge Volume** 

Run #1 Run #2  $5.0 \, ml$ 

### VOA TCL List (SOM02.0)

| CAS No.        | Compound                    | Result | RL  | MDL  | Units |
|----------------|-----------------------------|--------|-----|------|-------|
| 67-64-1        | Acetone                     | ND     | 25  | 10   | ug/l  |
| 71-43-2        | Benzene                     | ND     | 1.0 | 0.20 | ug/l  |
| 100-44-7       | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l  |
| 74-97-5        | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l  |
| 75-27-4        | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l  |
| <b>75-25-2</b> | Bromoform                   | ND     | 1.0 | 0.46 | ug/l  |
| 78-93-3        | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l  |
| 75-15-0        | Carbon Disulfide            | ND     | 2.0 | 0.23 | ug/l  |
| 56-23-5        | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l  |
| 108-90-7       | Chlorobenzene               | 0.63   | 1.0 | 0.20 | ug/l  |
| 75-00-3        | Chloroethane                | ND     | 2.0 | 0.63 | ug/l  |
| 67-66-3        | Chloroform                  | ND     | 1.0 | 0.30 | ug/l  |
| 110-82-7       | Cyclohexane                 | 0.61   | 1.0 | 0.26 | ug/l  |
| 124-48-1       | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l  |
| 96-12-8        | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/i  |
| 106-93-4       | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l  |
| 75-71-8        | Dichlorodifluoromethane     | ND     | 2.0 | 0.50 | ug/l  |
| 95-50-1        | 1,2-Dichlorobenzene         | 1.8    | 1.0 | 0.27 | ug/l  |
| 541-73-1       | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/l  |
| 106-4G-7       | 1,4-Dichlorobenzene         | ND     | 1.0 | 0.39 | ug/l  |
| 75-34-3        | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l  |
| 107-06-2       | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l  |
| 75-35-4        | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l  |
| 156-59-2       | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l  |
| 156-60-5       | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l  |
| 78-87-5        | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l  |
| 10061-01-5     | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l  |
| 10061-02-6     | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l  |
| 100-41-4       | Ethylbenzene                | 1.4    | 1.0 | 0.25 | ug/l  |
| 76-13-1        | Freon 113                   | ND     | 1.0 | 0.32 | ug/l  |
| 591-78-6       | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l  |
| 98-82-8        | Isopropylbenzene            | ND     | 1.0 | 0.33 | ug/l  |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Page 2 of 2

Client Sample ID: **RA3D-GWD** 

Lab Sample ID:

FA34029-2

Date Sampled: 05/17/16 Date Received: 05/18/16

Matrix: Method: AQ - Ground Water SW846 8260C

Percent Solids: n/a

Q

Project:

BMSMC, Building 5 Area, Humacao, PR

### VOA TCL List (SOM02.0)

| CAS No. Compound |                             | Result | RL     | MDL   | Units |
|------------------|-----------------------------|--------|--------|-------|-------|
| 99-87-6          | p-Isopropyltoluene          | ND     | 1.0    | 0.28  | ug/l  |
| 79-20-9          | Methyl Acetate              | ND     | 20     | 5.0   | ug/l  |
| 74-83-9          | Methyl Bromide              | ND     | 2.0    | 0.50  | ug/l  |
| 74-87-3          | Methyl Chloride             | ND     | 2.0    | 0.50  | ug/l  |
| 108-87-2         | Methylcyclohexane           | ND     | 1.0    | 0.23  | ug/l  |
| 75-09-2          | Methylene Chloride          | ND     | 5.0    | 2.0   | ug/l  |
| 108-10-1         | 4-Methyl-2-pentanone (MIBK) | ND     | 5.0    | 1.4   | ug/l  |
| 1634-04-4        | Methyl Tert Butyl Ether     | 37.7   | 1.0    | 0.20  | ug/l  |
| 100-42-5         | Styrene                     | ND     | 1.0    | 0.24  | ug/l  |
| 75-85-4          | Tert-Amyl Alcohol           | ND     | 20     | 6.0   | ug/l  |
| 75-65-0          | Tert-Butyl Alcohol          | 150    | 20     | 9.1   | ug/l  |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33  | ug/l  |
| 127-18-4         | Tetrachloroethylene         | ND     | 1.0    | 0.30  | ug/l  |
| 109-99-9         | Tetrahydrofuran             | ND     | 5.0    | 1.4   | ug/l  |
| 108-88-3         | Toluene                     | ND     | 1.0    | 0.20  | ug/l  |
| 87-61-6          | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51  | ug/l  |
| 120-82-1         | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50  | ug/l  |
| 71-55-6          | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20  | ug/l  |
| 79-00-5          | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37  | ug/l  |
| 79-01-6          | Trichloroethylene           | ND     | 1.0    | 0.27  | ug/l  |
| 75-69-4          | Trichlorofluoromethane      | ND     | 2.0    | 0.50  | ug/l  |
| 95-63-6          | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20  | ug/l  |
| 75-01-4          | Vinyl Chloride              | ND     | 1.0    | 0.31  | ug/l  |
|                  | m,p-Xylene                  | ND     | 2.0    | 0.30  | ug/l  |
| 95-47-6          | o-Xylene                    | ND     | 1.0    | 0.26  | ug/l  |
| CAS No.          | Surrogate Recoveries        | Run#1  | Run# 2 | Limi  | ts    |
| 1868-53-7        | Dibromofluoromethane        | 104%   |        | 83-1  | 18%   |
| 17060-07-0       | 1,2-Dichloroethane-D4       | 105%   |        | 79-13 | 25%   |
| 2037-26-5        | Toluene-D8                  | 104%   |        | 85-1  | 12%   |
| 460-00-4         | 4-Bromofluorobenzene        | 100%   |        | 83-1  | 18%   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### **SGS** Accutest

### Report of Analysis

By

DP

Page 1 of 2

Client Sample ID: BPEB-22

Lab Sample ID: Matrix:

FA34029-3

AQ - Equipment Blank

Prep Date

n/a

Date Sampled: 05/17/16 Date Received: 05/18/16

Method:

SW846 8260C

Project:

DF

1

Percent Solids: n/a

BMSMC, Building 5 Area, Humacao, PR

Analyzed

05/18/16

Prep Batch n/a

Analytical Batch VJ5304

Run #1 Run #2

Purge Volume

J0976605.D

Run #1

5.0 ml

File ID

Run #2

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL  | Units | Q |
|------------|-----------------------------|--------|-----|------|-------|---|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l  |   |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l  |   |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l  |   |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l  |   |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l  |   |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l  |   |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l  |   |
| 75-15-0    | Carbon Disulfide            | ND     | 2.0 | 0.23 | ug/l  |   |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l  |   |
| 108-90-7   | Chlorobenzene               | ND     | 1.0 | 0.20 | ug/l  |   |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/l  |   |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l  |   |
| 110-82-7   | Cyclohexane                 | ND     | 1.0 | 0.26 | ug/l  |   |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l  |   |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l  |   |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l  |   |
| 75-71-8    | Dichlorodifluoromethane     | ND     | 2.0 | 0.50 | ug/l  |   |
| 95-50-1    | 1,2-Dichlorobenzene         | ND     | 1.0 | 0.27 | ug/l  |   |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/l  |   |
| 106-46-7   | 1,4-Dichlorobenzene         | ND     | 1.0 | 0.39 | ug/l  |   |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l  |   |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l  |   |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l  |   |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l  |   |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l  |   |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l  |   |
| 100-41-4   | Ethylbenzene                | ND     | 1.0 | 0.25 | ug/l  |   |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l  |   |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l  |   |
| 98-82-8    | Isopropylbenzene            | ND     | 1.0 | 0.33 | ug/l  |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 05/17/16

Date Received: 05/18/16

Percent Solids: n/a

Client Sample ID: BPEB-22 Lab Sample ID:

Matrix:

Method:

Project:

FA34029-3

AQ - Equipment Blank

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

### VOA TCL List (SOM02.0)

| CAS No.        | Compound                    | Result | RL     | MDL   | Units | Q |
|----------------|-----------------------------|--------|--------|-------|-------|---|
| 99-87-6        | p-Isopropyltoluene          | ND     | 1.0    | 0.28  | ug/l  |   |
| 79-20-9        | Methyl Acetate              | ND     | 20     | 5.0   | ug/l  |   |
| 74-83-9        | Methyl Bromide              | ND     | 2.0    | 0.50  | ug/l  |   |
| 74-87-3        | Methyl Chloride             | ND     | 2.0    | 0.50  | ug/l  |   |
| 108-87-2       | Methylcyclohexane           | ND     | 1.0    | 0.23  | ug/l  |   |
| 75-09-2        | Methylene Chloride          | ND     | 5.0    | 2.0   | ug/l  |   |
| 108-10-1       | 4-Methyl-2-pentanone (MIBK) | ND     | 5.0    | 1.4   | ug/l  |   |
| 1634-04-4      | Methyl Tert Butyl Ether     | ND     | 1.0    | 0.20  | ug/l  |   |
| 100-42-5       | Styrene                     | ND     | 1.0    | 0.24  | ug/l  |   |
| 75-85-4        | Tert-Amyl Alcohol           | ND     | 20     | 6.0   | ug/l  |   |
| <b>75-65-0</b> | Tert-Butyl Alcohol          | ND     | 20     | 9.1   | ug/l  |   |
| 79-34-5        | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33  | ug/l  |   |
| 127-18-4       | Tetrachloroethylene         | ND     | 1.0    | 0.30  | ug/l  |   |
| 109-99-9       | Tetrahydrofuran             | ND     | 5.0    | 1.4   | ug/l  |   |
| 108-88-3       | Toluene                     | ND     | 1.0    | 0.20  | ug/l  |   |
| 87-61-6        | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51  | ug/l  |   |
| 120-82-1       | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50  | ug/l  |   |
| 71-55-6        | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20  | ug/l  |   |
| 79-00-5        | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37  | ug/l  |   |
| 79-01-6        | Trichloroethylene           | ND     | 1.0    | 0.27  | ug/l  |   |
| 75-69-4        | Trichlorofluoromethane      | ND     | 2.0    | 0.50  | ug/l  |   |
| 95-63-6        | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20  | ug/l  |   |
| 75-01-4        | Vinyl Chloride              | ND     | 1.0    | 0.31  | ug/l  |   |
|                | m,p-Xylene                  | ND     | 2.0    | 0.30  | ug/l  |   |
| 95-47-6        | o-Xylene                    | ND     | 1.0    | 0.26  | ug/l  |   |
| CAS No.        | Surrogate Recoveries        | Run# 1 | Run# 2 | Limi  | ts    |   |
| 1868-53-7      | Dibromofluoromethane        | 106%   |        | 83-11 | 18%   |   |
| 17060-07-0     | 1,2-Dichloroethane-D4       | 106%   |        | 79-12 | 25%   |   |
| 2037-26-5      | Toluene-D8                  | 104%   |        | 85-11 | 12%   |   |
| 460-00-4       | 4-Bromofluorobenzene        | 102%   |        | 83-11 | 18%   |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

<sup>] =</sup> Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

### **SGS Accutest**

### Report of Analysis

Page 1 of 2

Client Sample ID: RA3-GWS

Lab Sample ID: FA34029-4

Matrix: AQ - Ground Water Method:

SW846 8260C

Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids: n/a

Project: BMSMC, Building 5 Area, Humacao, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 J0976606.D 1 05/18/16 DP VJ5304 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL  | Units | Q |
|------------|-----------------------------|--------|-----|------|-------|---|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l  |   |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l  |   |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l  |   |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l  |   |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l  |   |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l  |   |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l  |   |
| 75-15-0    | Carbon Disulfide            | 0.53   | 2.0 | 0.23 | ug/l  | J |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l  |   |
| 108-90-7   | Chlorobenzene               | 0.99   | 1.0 | 0.20 | ug/l  | J |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/l  | _ |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l  |   |
| 110-82-7   | Cyclohexane                 | 0.29   | 1.0 | 0.26 | ug/l  | J |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l  |   |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l  |   |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l  |   |
| 75-71-8    | Dichlorodifluoromethane     | ND     | 2.0 | 0.50 | ug/l  |   |
| 95-50-1    | 1,2-Dichlorobenzene         | 0.50   | 1.0 | 0.27 | ug/l  | J |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | սց/լ  |   |
| 106-46-7   | 1,4-Dichlorobenzene         | ND     | 1.0 | 0.39 | ug/l  |   |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l  |   |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l  |   |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l  |   |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l  |   |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l  |   |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l  |   |
| 100-41-4   | Ethylbenzene                | 1.1    | 1.0 | 0.25 | ug/l  |   |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l  |   |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l  |   |
| 98-82-8    | Isopropylbenzene            | ND     | 1.0 | 0.33 | ug/l  |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 05/17/16

Date Received: 05/18/16

Percent Solids: n/a

### Report of Analysis

Client Sample ID: RA3-GWS

Lab Sample ID: FA34029-4

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL     | MDL   | Units | Q |
|------------|-----------------------------|--------|--------|-------|-------|---|
| 99-87-6    | p-Isopropyltoluene          | ND     | 1.0    | 0.28  | ug/l  |   |
| 79-20-9    | Methyl Acetate              | ND     | 20     | 5.0   | ug/l  |   |
| 74-83-9    | Methyl Bromide              | ND     | 2.0    | 0.50  | ug/l  |   |
| 74-87-3    | Methyl Chloride             | ND     | 2.0    | 0.50  | ug/l  |   |
| 108-87-2   | Methylcyclohexane           | ND     | 1.0    | 0.23  | ug/l  |   |
| 75-09-2    | Methylene Chloride          | ND     | 5.0    | 2.0   | ug/l  |   |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK) | ND     | 5.0    | 1.4   | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether     | 21.6   | 1.0    | 0.20  | ug/l  |   |
| 100-42-5   | Styrene                     | ND     | 1.0    | 0.24  | ug/l  |   |
| 75-85-4    | Tert-Amyl Alcohol           | ND     | 20     | 6.0   | ug/l  |   |
| 75-65-0    | Tert-Butyl Alcohol          | 177    | 20     | 9.1   | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33  | ug/l  |   |
| 127-18-4   | Tetrachloroethylene         | ND     | 1.0    | 0.30  | ug/l  |   |
| 109-99-9   | Tetrahydrofuran             | ND     | 5.0    | 1.4   | ug/l  |   |
| 108-88-3   | Toluene                     | ND     | 1.0    | 0.20  | ug/l  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51  | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50  | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20  | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37  | ug/l  |   |
| 79-01-6    | Trichloroethylene           | ND     | 1.0    | 0.27  | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane      | ND     | 2.0    | 0.50  | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20  | ug/l  |   |
| 75-01-4    | Vinyl Chloride              | ND     | 1.0    | 0.31  | ug/l  |   |
|            | m,p-Xylene                  | ND     | 2.0    | 0.30  | ug/l  |   |
| 95-47-6    | o-Xylene                    | ND     | 1.0    | 0.26  | ug/l  |   |
| CAS No.    | Surrogate Recoveries        | Run#1  | Run# 2 | Limi  | ts    |   |
| 1868-53-7  | Dibromofluoromethane        | 104%   |        | 83-11 | 8%    |   |
| 17060-07-0 | 1,2-Dichloroethane-D4       | 106%   |        | 79-12 | 25%   |   |
| 2037-26-5  | Toluene-D8                  | 104%   |        | 85-11 | 2%    |   |
| 460-00-4   | 4-Bromofluorobenzene        | 102%   |        | 83-11 | 8%    | 1 |
|            |                             |        |        |       |       |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

### SGS Accutest

### Report of Analysis

By

DP

n/a

Page 1 of 2

VJ5304

TB051716 Client Sample ID:

Lab Sample ID: FA34029-5

File ID

Matrix: Method: AQ - Trip Blank Water SW846 8260C

DF

1

Date Sampled: 04/11/16 Date Received: 05/18/16

n/a

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

05/18/16

Prep Batch **Analytical Batch** Prep Date

Run #1 a Run #2

Purge Volume

J0976607.D

Run #1 5.0 ml

Run #2

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL  | Units | Q      |
|------------|-----------------------------|--------|-----|------|-------|--------|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l  |        |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l  |        |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l  |        |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l  |        |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l  |        |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l  |        |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l  |        |
| 75-15-0    | Carbon Disulfide            | ND     | 2.0 | 0.23 | ug/l  |        |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l  |        |
| 108-90-7   | Chlorobenzene               | ND     | 1.0 | 0.20 | ug/l  |        |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/l  |        |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l  |        |
| 110-82-7   | Cyclohexane                 | ND     | 1.0 | 0.26 | ug/l  |        |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l  |        |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l  |        |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l  |        |
| 75-71-8    | Dichlorodifluoromethane     | ND     | 2.0 | 0.50 | ug/l  |        |
| 95-50-1    | 1,2-Dichlorobenzene         | ND     | 1.0 | 0.27 | ug/l  |        |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/l  |        |
| 106-46-7   | 1,4-Dichlorobenzene         | ND     | 1.0 | 0.39 | ug/l  |        |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l  |        |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l  |        |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l  | 100    |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l  | /      |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l  | 3      |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l  | 15     |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l  | Carres |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l  | 3      |
| 100-41-4   | Ethylbenzene                | ND     | 1.0 | 0.25 | ug/l  |        |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l  | 20     |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l  | /      |
| 98-82-8    | Isopropylbenzene            | ND     | 1.0 | 0.33 | ug/l  |        |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Page 2 of 2

Client Sample ID:

TB051716

Lab Sample ID: FA34029-5

Matrix: Method:

Project:

AQ - Trip Blank Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 04/11/16 Date Received: 05/18/16

Q

Percent Solida: n/a

### VOA TCL List (SOM02.0)

| CAS No.       | Compound                          | Result | RL     | MDL   | Units |
|---------------|-----------------------------------|--------|--------|-------|-------|
| 99-87-6       | p-Isopropyltoluene                | ND     | 1.0    | 0.28  | ug/l  |
| 79-20-9       | Methyl Acetate                    | ND     | 20     | 5.0   | ug/l  |
| 74-83-9       | Methyl Bromide                    | ND     | 2.0    | 0.50  | ug/l  |
| 74-87-3       | Methyl Chloride                   | ND     | 2.0    | 0.50  | ug/l  |
| 108-87-2      | Methylcyclohexane                 | ND     | 1.0    | 0.23  | ug/l  |
| 75-09-2       | Methylene Chloride                | ND     | 5.0    | 2.0   | ug/l  |
| 108-10-1      | 4-Methyl-2-pentanone (MIBK)       | ND     | 5.0    | 1.4   | ug/l  |
| 1634-04-4     | Methyl Tert Butyl Ether           | ND     | 1.0    | 0.20  | ug/l  |
| 100-42-5      | Styrene                           | ND     | 1.0    | 0.24  | ug/l  |
| 75-85-4       | Tert-Amyl Alcohol                 | ND     | 20     | 6.0   | ug/l  |
| 75-65-0       | Tert-Butyl Alcohol                | ND     | 20     | 9.1   | ug/I  |
| 79-34-5       | 1,1,2,2-Tetrachloroethanc         | ND     | 1.0    | 0.33  | ug/l  |
| 127-18-4      | Tetrachloroethylene               | ND     | 1.0    | 0.30  | ug/l  |
| 109-99-9      | Tetrahydrofuran                   | ND     | 5.0    | 1.4   | ug/l  |
| 108-88-3      | Toluene                           | ND     | 1.0    | 0.20  | ug/l  |
| 87-61-6       | 1,2,3-Trichlorobenzene            | ND     | 2.0    | 0.51  | ug/l  |
| 120-82-1      | 1,2,4-Trichlorobenzene            | ND     | 2.0    | 0.50  | ug/l  |
| 71-55-6       | 1,1,1-Trichloroethane             | ND     | 1.0    | 0.20  | ug/l  |
| 79-00-5       | 1,1,2-Trichloroethane             | ND     | 1.0    | 0.37  | ug/l  |
| 79-01-6       | Trichloroethylene                 | ND     | 1.0    | 0.27  | ug/l  |
| 75-69-4       | Trichlorofluoromethane            | ND     | 2.0    | 0.50  | ug/l  |
| 95-63-6       | 1,2,4-Trimethylbenzene            | ND     | 1.0    | 0.20  | ug/i  |
| 75-01-4       | Vinyl Chloride                    | ND     | 1.0    | 0.31  | ug/l  |
|               | m,p-Xylene                        | ND     | 2.0    | 0.30  | ug/l  |
| 95-47-6       | o-Xylene                          | ND     | 1.0    | 0.26  | ug/l  |
| CAS No.       | Surrogate Recoveries              | Run#1  | Run# 2 | Limi  | ts    |
| 1868-53-7     | Dibromofluoromethane              | 103%   |        | 83-11 | 8%    |
| 17060-07-0    | 1,2-Dichloroethane-D4             | 105%   |        | 79-12 | 25%   |
| 2037-26-5     | Toluene-D8                        | 104%   |        | 85-11 | 2%    |
| 460-00-4      | 4-Bromofluorobenzene              | 102%   |        | 83-11 | 8%    |
| (a) Sample re | eceived outside the holding time. |        |        |       |       |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

| SGS ACCI                                       | JTEST-         |                     | TEI. 732-32 | 9-0200             | FAX. 71                  | 2 129<br>m O | Iria   | de         | FL       |          | 100              |          | 56957      |            | ger.        | From         | Name Codes                                            |
|------------------------------------------------|----------------|---------------------|-------------|--------------------|--------------------------|--------------|--------|------------|----------|----------|------------------|----------|------------|------------|-------------|--------------|-------------------------------------------------------|
| Heren Milholland Assec Inc                     | 8/             | us R                | elcas       | 1                  | sse                      | 891          | ned    | +          |          |          | 28               |          |            |            | П           |              | DW - Chesting Wate<br>GW - Greats Train<br>WW - Water |
| 700 West chester                               | Chy            |                     | -57         | Company            | y Heren                  | - (4         | -      | -          | 164      |          | ⊣ જા             |          |            |            |             |              | APP - Surface Water<br>SQ - Soil<br>SL- Shalps        |
| urchase Ny                                     | Huma           | Cao                 | PR          | Birmi A            | -                        | _            |        |            | -        | _        | 00               |          |            | Ш          |             |              | SED-Backrowni<br>Ol - Cill<br>LICO - Other Liquel     |
| erry Taylor                                    | Chart Purchasa | Order #             |             | Chy                |                          | _            | - Sa   | _          | _        | Σu       | C Yes            |          |            |            |             |              | ASI + Air<br>SOL - Other Sales<br>WP + Wigns          |
| 14-257-0400                                    | -              |                     |             | 100                |                          |              |        |            |          |          | 12               | 11       |            |            |             |              | FB-Part Blank<br>CB-Partment Bur                      |
| Rivera, T. Taylor, D. Lines                    | 190            |                     |             |                    |                          |              |        |            |          |          | 10               |          |            |            |             |              | RS-Rines Brank<br>TB-Trip Dlunk                       |
| Field ID / Point of Collection                 |                |                     |             |                    |                          |              | H      | la la      |          | _ K      | S                |          |            |            |             |              |                                                       |
|                                                | MEDHORNER      | Day.                | Time        | =                  | $\vdash$                 | -            | 9 9    | 3 6        | 0 å      | 3 3      |                  | $\perp$  | -          | 1          | 1           |              | LAB USE ONLY                                          |
| RAS-GWD<br>RASD-GWD                            | -              | 05/17/              | 0115        | 77                 | 6w                       | 3            | 3      | ₩          | Н        | +1       | X                | +        | -          | -          | 1           | -            |                                                       |
| BPER 22                                        | _              | OSINIE              | 1110        |                    | ÉB                       | 3,           | 3      | H          | $\vdash$ | ₩        | <del>    -</del> | +        | +          | +          | ++          | -            |                                                       |
| KA3-GWS                                        |                | 05/11/16            | 1215        |                    | G₩                       | 2            | 3      |            | Н        | +1       | <del>I</del> ŞI- | $\Box$   |            |            | ++          |              |                                                       |
| TB051716                                       |                | 04/11/16            | 8630        |                    | TB                       | 2            | 2      | П          |          | $\Box$   | X                |          |            |            |             |              |                                                       |
| <u> </u>                                       | -              |                     |             | -                  | -                        |              | 11     | -          | Ш        | -        | +                |          | _          |            | $\sqcup$    |              |                                                       |
|                                                |                |                     |             |                    | $\vdash$                 | Sage C       | ++-    | ₩          | +        |          | +                | -        | -          | ++-        | ++          |              | _                                                     |
|                                                |                |                     |             |                    |                          |              | 1      | -          | Н        | ++       | 1 +              | $\vdash$ | +          |            | + 1         |              |                                                       |
|                                                |                |                     |             |                    |                          |              | П      |            |          | П        |                  |          |            |            |             |              |                                                       |
|                                                | -              | -                   |             |                    |                          |              | #      | Ш          | _ _      | 11       | +                | $\perp$  | _          | $\perp$    | +1          |              |                                                       |
| Temporard Time ( (bushess map)                 |                | 100                 |             | risolous<br>market |                          | Dest         | Outhor | nicia Irak |          | П        | -                |          | 10000000   | Commen     | n / Special | instructions |                                                       |
| Man 10 Demons Days FOR SAN SAN                 | le-            | Annual Phys Pipeles |             |                    | Carrent<br>Carrent       |              |        |            |          | ASP Cale |                  | Ada      | I to RE    | sort -     | Tetro       | hydro        | Auran.                                                |
| □ S Day RUSH                                   |                |                     |             |                    | FLELTTI (<br>PLJ (bodete |              | 4)     |            | <u> </u> | te Ferme |                  |          |            | ropy       |             |              | ,                                                     |
| Stommun For agreeds 54                         | Ales -         |                     |             |                    | -                        | 9.6          |        |            | ≓ ⊶      |          |                  | 1        | t          | 4          | hed I       | MAZEM        | Buzyl .                                               |
|                                                |                |                     |             | Comme              | ALI Date :               |              |        |            |          | 49 + OC  | Suttenary        | 060      | o de       | Te         | 70 0        | nvl c        | historie                                              |
| Pargercy & Ruse TIA days evellation VAA Labora | 5.             | emple Contactly to  | ut be detur |                    | uced = Res<br>elaw each  |              |        |            |          |          | Auding cour      | Samp     | in invento | y is verse | d upon r    | ocebi in th  | e Laboratory                                          |
| 1 1 1 1 05 K                                   | 7/11/50        | Te                  | -           | X                  | 19                       | 0.           | 2      | istaaj By: |          | Fx       | 17               |          | New Years  | 2          | 17          | 1:           | Strike 415                                            |
|                                                | -              | _                   |             | _                  |                          |              |        |            |          |          |                  | -        | hate These |            |             |              | er yes                                                |

FA34029: Chain of Custody Page 1 of 3

### **EXECUTIVE NARRATIVE**

SDG No:

FA34029

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

5

Location:

BMSMC - Building 5 Area

Humacao, PR

**SUMMARY:** 

Five (5) samples were analyzed for volatile organic compounds (VOCs) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

None

Major:

None

Minor:

None

**Critical findings:** 

None

Major findings:

None

Minor findings:

- 1. Samples analyzed within method recommended holding time except for sample FA34029-5 that was received and analyzed outside the holding time. The sample is a Trip Blank, no action taken. Sample preservation was within required criteria.
- 2. Initial calibration, initial calibration verification, and continuing calibration verification within the validation guidance document required criteria except in the cases described in the data review worksheet. Results qualified accordingly (UJ) in affected samples. Closing calibration check verification not included in data package. No action taken.
- **3.** MS/MSD % recovery for tert-Butyl Alcohol and MSD % recovery for dibromochloromethane outside control limits in sample FA33834-1MSD. Result for tert-Butyl Alcohol qualified estimated (J) and result for dibromochloromethane qualified estimated (UJ) in afected.

**COMMENTS:** 

Results are valid and can be used for decision making purposes.

**Reviewers Name:** 

Rafael Infante

**Chemist License 1888** 

Signature:

Date:

May 28, 2016

# SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA34029-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016 Matrix: Groundwater

| Analyte Name                | Result | Units Dilu | Jnits Dilution Factor Lab Flag | Lab Flag | Validation  | Validation Reportable |  |
|-----------------------------|--------|------------|--------------------------------|----------|-------------|-----------------------|--|
| Acetone                     | 25     | ng/L       | 1.0                            | •        | ⊃           | Yes                   |  |
| Benzene                     | 1.0    | ug/L       | 1.0                            | •        | Þ           | Yes                   |  |
| Benzyl Chloride             | 2.0    | ug/L       | 1.0                            | •        | D           | Yes                   |  |
| Bromochloromethane          | 1.0    | ng/L       | 1.0                            | ι        | ס           | Yes                   |  |
| Bromodichloromethane        | 1.0    | ng/L       | 1.0                            | ι        | n           | Yes                   |  |
| Bromoform                   | 1.0    | ng/L       | 1.0                            | ı        | ⊃           | Yes                   |  |
| 2-Butanone (MEK)            | 5.0    | ng/L       | 1.0                            |          | ם           | Yes                   |  |
| Carbon disulfide            | 2.0    | ng/L       | 1.0                            | 1        | ⊃           | Yes                   |  |
| Carbon tetrachloride        | 1.0    | ng/L       | 1.0                            | 1        | ⊃           | Yes                   |  |
| Chlorobenzene               | 0.59   | ng/L       | 1.0                            | -        | 5           | Yes                   |  |
| Chloroethane                | 2.0    | ng/L       | 1.0                            | 1        | 3           | Yes                   |  |
| Chloroform                  | 1.0    | ng/L       | 1.0                            | ı        | ⊃           | Yes                   |  |
| Cyclohexane                 | 0.54   | ng/L       | 1.0                            | _        | ī           | Yes                   |  |
| Dibromochloromethane        | 1.0    | ng/L       | 1.0                            | •        | n           | Yes                   |  |
| 1,2-Dibromo-3-chloropropane | 2.0    | ng/L       | 1.0                            | 1        | ⊃           | Yes                   |  |
| 1,2-Dibromoethane           | 2.0    | ng/L       | 1.0                            | ,        | ⊃           | Yes                   |  |
| Dichlorodifluoromethane     | 2.0    | ng/L       | 1.0                            | 1        | ⊃           | Yes                   |  |
| 1,2-Dichlorobenzene         | 1.6    | ng/L       | 1.0                            | •        | ⊃           | Yes                   |  |
| 1,3-Dichlorobenzene         | 1.0    | ng/L       | 1.0                            | ,        | D           | Yes                   |  |
| 1,4-Dichlorobenzene         | 1.0    | ng/L       | 1.0                            | ı        | ⊃           | Yes                   |  |
| 1,1-Dichloroethane          | 1.0    | ng/L       | 1.0                            | 1        | <b>&gt;</b> | Yes                   |  |
| 1,2-Dichloroethane          | 1.0    | ng/L       | 1.0                            | i        | <b>5</b>    | Yes                   |  |
| 1,1-Dichloroethene          | 1.0    | ng/L       | 1.0                            | •        | J           | Yes                   |  |
| cis-1,2-Dichloroethene      | 1.0    | ng/L       | 1.0                            | 1        | )           | Yes                   |  |

| Yes                      | Yes                 | Yes                     | Yes                       | Yes          | Yes       | Yes        | Yes              | Yes                | Yes            | Yes            | Yes             | Yes               | Yes                | Yes                        | Yes                     | Yes     | Yes               | Yes                | Yes                       | Yes               | Yes             | Yes     | Yes                    | Yes                    | Yes                   | Yes                   | Yes             | Yes                    | Yes                    | Yes            | Yes        | Yes      |
|--------------------------|---------------------|-------------------------|---------------------------|--------------|-----------|------------|------------------|--------------------|----------------|----------------|-----------------|-------------------|--------------------|----------------------------|-------------------------|---------|-------------------|--------------------|---------------------------|-------------------|-----------------|---------|------------------------|------------------------|-----------------------|-----------------------|-----------------|------------------------|------------------------|----------------|------------|----------|
| n                        | )                   | ⊃                       | ⊃                         | ⊃            | ⊃         | D          | ⊃                | D                  | כ              | )              | ⊃               | )                 | D                  | 3                          | 1                       | )       | D                 | _                  | ⊃                         | ⊃                 | D               | ם       | ⊃                      | ⊃                      | ⊃                     | ⊃                     | ⊃               | ⊃                      | ⊃                      | ⊃              | D          | D        |
| 1                        | ï                   | e e                     | ă                         | i            |           | ٠,         |                  | a                  | 1              | c              | 1               | ï                 | C                  | _                          | 7                       |         | ï                 | r                  | Si                        | 1                 | ř               | 1       | 1                      | 1                      | ï                     |                       | •               |                        | F                      | á              | ı          | T        |
| 1.0                      | 1.0                 | 1.0                     | 1.0                       | 1.0          | 1.0       | 1.0        | 1.0              | 1.0                | 1.0            | 1.0            | 1.0             | 1.0               | 1.0                | 1.0                        | 1.0                     | 1.0     | 1.0               | 1.0                | 1.0                       | 1.0               | 1.0             | 1.0     | 1.0                    | 1.0                    | 1.0                   | 1.0                   | 1.0             | 1.0                    | 1.0                    | 1.0            | 1.0        | 1.0      |
| ug/L                     | ug/L                | ng/L                    | ng/L                      | ng/L         | ng/L      | ng/L       | ng/L             | ng/L               | ug/L           | ng/L           | ng/L            | ug/L              | ng/L               | ng/L                       | ng/L                    | ng/L    | ng/L              | ng/L               | ng/L                      | ng/L              | ng/L            | ng/L    | ug/L                   | ug/L                   | ng/L                  | ng/L                  | ng/L            | ug/L                   | ng/L                   | ng/L           | ng/L       | ng/L     |
| 1.0                      | 1.0                 | 1.0                     | 1.0                       | 1.6          | 1.0       | 10         | 1.0              | 1.0                | 20             | 2.0            | 2.0             | 1.0               | 5.0                | 1.9                        | 38.2                    | 1.0     | 20                | 151                | 1.0                       | 1.0               | 5.0             | 1.0     | 2.0                    | 2.0                    | 1.0                   | 1.0                   | 1.0             | 2.0                    | 1.0                    | 1.0            | 2.0        | 1.0      |
| trans-1,2-Dichloroethene | 1,2-Dichloropropane | cis-1,3-Dichloropropene | trans-1,3-Dichloropropene | Ethylbenzene | Freon 113 | 2-Hexanone | Isopropylbenzene | p-Isopropyltoluene | Methyl Acetate | Methyl Bromide | Methyl Chloride | Methylcyclohexane | Methylene chloride | 4-Methyl-2-pentanone(MIBK) | Methyl Tert Butyl Ether | Styrene | Tert-Amyl Alcohol | Tert-Butyl Alcohol | 1,1,2,2-Tetrachloroethane | Tetrachloroethene | Tetrahydrofuran | Toluene | 1,2,3-Trichlorobenzene | 1,2,4-Trichlorobenzene | 1,1,1-Trichloroethane | 1,1,2-Trichloroethane | Trichloroethene | Trichlorofluoromethane | 1,2,4-Trimethylbenzene | Vinyl chloride | m,p-Xylene | o-Xylene |

Sample ID: FA34029-2

Sample location: BMSMC Building 5 Area Sampling date: 5/17/2016

Matrix: Groundwater

| Applyto Name                | Bacult | Inite Dilut | Dilution Factor Lab Flag |          | Validation Reportable | Renortable   |  |
|-----------------------------|--------|-------------|--------------------------|----------|-----------------------|--------------|--|
| אופוארבוא                   | INCOUR |             | מכנסו                    |          | Validacioni           | ויכלסו נפחור |  |
| Acetone                     | 25     | ng/L        | 1.0                      |          | <b>-</b>              | Yes          |  |
| Benzene                     | 1.0    | ng/L        | 1.0                      |          | ⊃                     | Yes          |  |
| Benzyl Chloride             | 2.0    | ng/L        | 1.0                      |          | D                     | Yes          |  |
| Bromochloromethane          | 1.0    | ng/L        | 1.0                      | C        | D<br>,                | Yes          |  |
| Bromodichloromethane        | 1.0    | ng/L        | 1.0                      | 1        | n                     | Yes          |  |
| Bromoform                   | 1.0    | ng/L        | 1.0                      | •        | D                     | Yes          |  |
| 2-Butanone (MEK)            | 2.0    | ng/L        | 1.0                      | 0        | D                     | Yes          |  |
| Carbon disulfide            | 2.0    | ng/L        | 1.0                      | ,        | ⊃                     | Yes          |  |
| Carbon tetrachloride        | 1.0    | ng/L        | 1.0                      |          | D                     | Yes          |  |
| Chlorobenzene               | 0.63   | ug/L        | 1.0                      | -,       | 3                     | Yes          |  |
| Chloroethane                | 2.0    | ug/L        | 1.0                      | •        | 5                     | Yes          |  |
| Chloroform                  | 1.0    | ng/L        | 1.0                      |          | n                     | Yes          |  |
| Cyclohexane                 | 0.61   | ng/L        | 1.0                      | <b>-</b> | 5                     | Yes          |  |
| Dibromochloromethane        | 1.0    | ng/L        | 1.0                      | 1        | n                     | Yes          |  |
| 1,2-Dibromo-3-chloropropane | 2.0    | ng/L        | 1.0                      | 1        | D                     | Yes          |  |
| 1,2-Dibromoethane           | 2.0    | ng/L        | 1.0                      | 1        | ⊃                     | Yes          |  |
| Dichlorodifluoromethane     | 2.0    | ng/L        | 1.0                      | ij       | ם                     | Yes          |  |
| 1,2-Dichlorobenzene         | 1.0    | ng/L        | 1.0                      | ı        | ⊃                     | Yes          |  |
| 1,3-Dichlorobenzene         | 1.0    | ug/L        | 1.0                      | ı        | )                     | Yes          |  |
| 1,4-Dichlorobenzene         | 1.0    | ng/L        | 1.0                      | ·        | D                     | Yes          |  |
| 1,1-Dichloroethane          | 1.0    | ng/L        | 1.0                      | •        | D                     | Yes          |  |
| 1,2-Dichloroethane          | 1.0    | ng/L        | 1.0                      | •        | D                     | Yes          |  |
| 1,1-Dichloroethene          | 1.0    | ng/L        | 1.0                      | ι        | )                     | Yes          |  |
| cis-1,2-Dichloroethene      | 1.0    | ng/L        | 1.0                      | ı        | J                     | Yes          |  |
| trans-1,2-Dichloroethene    | 1.0    | ug/L        | 1.0                      | •        | J                     | Yes          |  |
| 1,2-Dichloropropane         | 1.0    | ng/L        | 1.0                      | t        | ח                     | Yes          |  |

| Yes                     | Yes                       | Yes          | Yes       | Yes        | Yes              | Yes                | Yes            | Yes            | Yes             | Yes               | Yes                | Yes                        | Yes                     | Yes     | Yes               | Yes                | Yes                       | Yes               | Yes             | Yes     | Yes                    | Yes                    | Yes                   | Yes                   | Yes             | Yes                    | Yes                    | Yes            | Yes        | Yes      |
|-------------------------|---------------------------|--------------|-----------|------------|------------------|--------------------|----------------|----------------|-----------------|-------------------|--------------------|----------------------------|-------------------------|---------|-------------------|--------------------|---------------------------|-------------------|-----------------|---------|------------------------|------------------------|-----------------------|-----------------------|-----------------|------------------------|------------------------|----------------|------------|----------|
| D                       | D                         | D            | כ         | ⊃          | ⊃                | ⊃                  | ⊃              | D              | D               | ⊃                 | D                  | D                          | •                       | D       | ⊃                 | •                  | ⊃                         | D                 | ⊃               | o       | <b>D</b>               | D                      | ⊃                     | ⊃                     | ⊃               | )                      | ⊃                      | )              | D          | )        |
| 4                       | 1                         | ē.           | •         | Ŷ          | r                | 4                  | ï              |                | ,               | ř                 | 4                  | ,                          | c                       | 4       |                   | 1                  | 1                         | ī                 | 1               | Ţ       | ř                      | 4                      |                       | i i                   | n               |                        | 1                      | •              |            | 9        |
| 1.0                     | 1.0                       | 1.0          | 1.0       | 1.0        | 1.0              | 1.0                | 1.0            | 1.0            | 1.0             | 1.0               | 1.0                | 1.0                        | 1.0                     | 1.0     | 1.0               | 1.0                | 1.0                       | 1.0               | 1.0             | 1.0     | 1.0                    | 1.0                    | 1.0                   | 1.0                   | 1.0             | 1.0                    | 1.0                    | 1.0            | 1.0        | 1.0      |
| ng/L                    | ng/L                      | ng/L         | ng/L      | ng/L       | ng/L             | ng/L               | ng/L           | ng/L           | ng/L            | ug/L              | ng/L               | ng/L                       | ng/L                    | ng/L    | ng/L              | ng/L               | ng/L                      | ng/L              | ng/L            | ng/L    | ng/L                   | ng/L                   | ng/L                  | ng/L                  | ng/L            | ng/L                   | ng/L                   | ng/L           | ng/L       | ng/L     |
| 1.0                     | 1.0                       | 1.4          | 1.0       | 10         | 1.0              | 1.0                | 70             | 2.0            | 2.0             | 1.0               | 5.0                | 2.0                        | 37.7                    | 1.0     | 20                | 150                | 1.0                       | 1.0               | 5.0             | 1.0     | 2.0                    | 2.0                    | 1.0                   | 1.0                   | 1.0             | 2.0                    | 1.0                    | 1.0            | 2.0        | 1.0      |
| cis-1,3-Dichloropropene | trans-1,3-Dichloropropene | Ethylbenzene | Freon 113 | 2-Hexanone | Isopropylbenzene | p-Isopropyitoluene | Methyl Acetate | Methyl Bromide | Methyl Chloride | Methylcyclohexane | Methylene chloride | 4-Methyl-2-pentanone(MIBK) | Methyl Tert Butyl Ether | Styrene | Tert-Amyl Alcohol | Tert-Butyl Alcohol | 1,1,2,2-Tetrachloroethane | Tetrachloroethene | Tetrahydrofuran | Toluene | 1,2,3-Trichlorobenzene | 1,2,4-Trichlorobenzene | 1,1,1-Trichloroethane | 1,1,2-Trichloroethane | Trichloroethene | Trichlorofluoromethane | 1,2,4-Trimethylbenzene | Vinyl chloride | m,p-Xylene | o-Xylene |

Sample ID: FA34029-3

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016

Matrix: AQ - Equipment Blank

| Analyte Name                | Result | Units Dilut | Jnits Dilution Factor | Lab Flag | Validation  | Validation Reportable |  |
|-----------------------------|--------|-------------|-----------------------|----------|-------------|-----------------------|--|
| Acetone                     | 25     | ng/L        | 1.0                   | ι        | Þ           | Yes                   |  |
| Benzene                     | 1.0    | ng/L        | 1.0                   | ı        | <b>&gt;</b> | Yes                   |  |
| Benzyl Chloride             | 2.0    | ng/L        | 1.0                   | ι        | D           | Yes                   |  |
| Bromochloromethane          | 1.0    | ng/L        | 1.0                   | 1        | <b></b>     | Yes                   |  |
| Bromodichloromethane        | 1.0    | ng/L        | 1.0                   | t        | )           | Yes                   |  |
| Bromoform                   | 1.0    | ng/L        | 1.0                   | ι        | o           | Yes                   |  |
| 2-Butanone (MEK)            | 2.0    | ng/L        | 1.0                   | ı        | ⊃           | Yes                   |  |
| Carbon disulfide            | 2.0    | ng/L        | 1.0                   | ı        | ⊃           | Yes                   |  |
| Carbon tetrachloride        | 1.0    | ng/L        | 1.0                   | •        | D           | Yes                   |  |
| Chlorobenzene               | 1.0    | ng/L        | 1.0                   | •        | )           | Yes                   |  |
| Chloroethane                | 2.0    | ng/L        | 1.0                   | 1        | 5           | Yes                   |  |
| Chloroform                  | 1.0    | ng/L        | 1.0                   | 1        | )           | Yes                   |  |
| Cyclohexane                 | 1.0    | ng/L        | 1.0                   | ¥        | <b>-</b>    | Yes                   |  |
| Dibromochloromethane        | 1.0    | ng/L        | 1.0                   | 1        | )           | Yes                   |  |
| 1,2-Dibromo-3-chloropropane | 2.0    | ng/L        | 1.0                   | ı        | ⊃           | Yes                   |  |
| 1,2-Dibromoethane           | 2.0    | ng/L        | 1.0                   | 1        | >           | Yes                   |  |
| Dichlorodifluoromethane     | 2.0    | ng/L        | 1.0                   | ı        | >           | Yes                   |  |
| 1,2-Dichlorobenzene         | 1.0    | ng/L        | 1.0                   | ij       | >           | Yes                   |  |
| 1,3-Dichlorobenzene         | 1.0    | ng/L        | 1.0                   |          | ⊃           | Yes                   |  |
| 1,4-Dichlorobenzene         | 1.0    | ng/L        | 1.0                   | •        | )           | Yes                   |  |
| 1,1-Dichloroethane          | 1.0    | ng/L        | 1.0                   | ı        | ⊃           | Yes                   |  |
| 1,2-Dichloroethane          | 1.0    | ng/L        | 1.0                   | 1        | ⊃           | Yes                   |  |
| 1,1-Dichloroethene          | 1.0    | ug/L        | 1.0                   | t        | ⊃           | Yes                   |  |
| cis-1,2-Dichloroethene      | 1.0    | ng/L        | 1.0                   | ı        | ⊃           | Yes                   |  |
| trans-1,2-Dichloroethene    | 1.0    | ng/L        | 1.0                   | •        | ⊃           | Yes                   |  |
| 1,2-Dichloropropane         | 1.0    | ng/L        | 1.0                   | ١,       | D           | Yes                   |  |

| U Yes                   | U Yes                     | U Yes        | U Yes     | U Yes      | U Yes            | U Yes              | U Yes          | U Yes          | U Yes           | U Yes             | U Yes              | U Yes                      | U Yes                   | U Yes   | U Yes             | U Yes              | U Yes                     | U Yes             | U Yes           | U Yes   | U Yes                  | U Yes                  | U Yes                 | U Yes                 | U Yes           | U Yes                  | U Yes                  | U Yes          | U Yes      | U Yes    |
|-------------------------|---------------------------|--------------|-----------|------------|------------------|--------------------|----------------|----------------|-----------------|-------------------|--------------------|----------------------------|-------------------------|---------|-------------------|--------------------|---------------------------|-------------------|-----------------|---------|------------------------|------------------------|-----------------------|-----------------------|-----------------|------------------------|------------------------|----------------|------------|----------|
|                         | r                         |              | ,         | ė          | Sir.             |                    | e              | ٠,             |                 |                   | .1                 | r                          | 1                       | ī       | r                 | 3                  | ¥                         | r                 | ,               | ·       |                        | 1                      | ï                     | -                     |                 | e                      | a                      | ř              | .1         | Ŧ        |
| 1.0                     | 1.0                       | 1.0          | 1.0       | 1.0        | 1.0              | 1.0                | 1.0            | 1.0            | 1.0             | 1.0               | 1.0                | 1.0                        | 1.0                     | 1.0     | 1.0               | 1.0                | 1.0                       | 1.0               | 1.0             | 1.0     | 1.0                    | 1.0                    | 1.0                   | 1.0                   | 1.0             | 1.0                    | 1.0                    | 1.0            | 1.0        | 1.0      |
| ng/L                    | ng/L                      | ng/L         | ng/L      | ng/L       | ng/L             | ng/L               | ng/L           | ug/L           | ng/L            | ng/L              | ng/L               | ng/L                       | ng/L                    | ng/L    | ng/L              | ng/L               | ng/L                      | ng/L              | ng/L            | ng/L    | ng/L                   | ng/L                   | ng/L                  | ug/L                  | ng/L            | ng/L                   | ng/L                   | ng/L           | ug/L       | ug/L     |
| 1.0                     | 1.0                       | 1.0          | 1.0       | 10         | 1.0              | 1.0                | 20             | 2.0            | 2.0             | 1.0               | 5.0                | 5.0                        | 1.0                     | 1.0     | 20                | 20                 | 1.0                       | 1.0               | 5.0             | 1.0     | 2.0                    | 2.0                    | 1.0                   | 1.0                   | 1.0             | 2.0                    | 1.0                    | 1.0            | 2.0        | 1.0      |
| cis-1,3-Dichloropropene | trans-1,3-Dichloropropene | Ethylbenzene | Freon 113 | 2-Hexanone | Isopropyibenzene | p-Isopropyltoluene | Methyl Acetate | Methyl Bromide | Methyl Chloride | Methylcyclohexane | Methylene chloride | 4-Methyl-2-pentanone(MIBK) | Methyl Tert Butyl Ether | Styrene | Tert-Amyl Alcohol | Tert-Butyl Alcohol | 1,1,2,2-Tetrachloroethane | Tetrachloroethene | Tetrahydrofuran | Toluene | 1,2,3-Trichlorobenzene | 1,2,4-Trichlorobenzene | 1,1,1-Trichloroethane | 1,1,2-Trichloroethane | Trichloroethene | Trichlorofluoromethane | 1,2,4-Trimethylbenzene | Vinyl chloride | m,p-Xylene | o-Xylene |

Sample ID: FA34029-4

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016

Matrix: Groundwater

| Analyte Name                | Result | Units Dilu | Dilution Factor | Lab Flag | Validation | Validation Reportable |
|-----------------------------|--------|------------|-----------------|----------|------------|-----------------------|
| Acetone                     | 25     | ng/L       | 1.0             | 1        | ⊃          | Yes                   |
| Benzene                     | 1.0    | ng/L       | 1.0             | ı        | )          | Yes                   |
| Benzyl Chloride             | 2.0    | ng/L       | 1.0             | ı        | n          | Yes                   |
| Bromochloromethane          | 1.0    | ng/L       | 1.0             | ı        | ח          | Yes                   |
| Bromodichloromethane        | 1.0    | ug/L       | 1.0             | •        | ⊃          | Yes                   |
| Bromoform                   | 1.0    | ng/L       | 1.0             | í        | o          | Yes                   |
| 2-Butanone (MEK)            | 2.0    | ng/L       | 1.0             | 1        | ⊃          | Yes                   |
| Carbon disulfide            | 0.53   | ng/L       | 1.0             | ¬        | 3          | Yes                   |
| Carbon tetrachloride        | 1.0    | ng/L       | 1.0             | 1        | ⊃          | Yes                   |
| Chlorobenzene               | 0.99   | ng/L       | 1.0             | -        | 3          | Yes                   |
| Chloroethane                | 2.0    | ng/L       | 1.0             | •        | 3          | Yes                   |
| Chloroform                  | 1.0    | ng/L       | 1.0             | •        | >          | Yes                   |
| Cyclohexane                 | 0.29   | ng/L       | 1.0             | _        | 3          | Yes                   |
| Dibromochloromethane        | 1.0    | ng/L       | 1.0             | ı        | ⊃          | Yes                   |
| 1,2-Dibromo-3-chloropropane | 5.0    | ng/L       | 1.0             | •        | o          | Yes                   |
| 1,2-Dibromoethane           | 2.0    | ng/L       | 1.0             | •        | o          | Yes                   |
| Dichlorodifluoromethane     | 2.0    | ng/L       | 1.0             | •        | ⊃          | Yes                   |
| 1,2-Dichlorobenzene         | 0.50   | ng/L       | 1.0             | -        | 5          | Yes                   |
| 1,3-Dichlorobenzene         | 1.0    | ug/L       | 1.0             | t        | ⊃          | Yes                   |
| 1,4-Dichlorobenzene         | 1.0    | ug/L       | 1.0             | ï        | ⊃          | Yes                   |
| 1,1-Dichloroethane          | 1.0    | ng/L       | 1.0             | 1        | ⊃          | Yes                   |
| 1,2-Dichloroethane          | 1.0    | ng/L       | 1.0             | 1        | )          | Yes                   |
| 1,1-Dichloroethene          | 1.0    | ng/L       | 1.0             | r.       | ⊃          | Yes                   |
| cis-1,2-Dichloroethene      | 1.0    | ng/L       | 1.0             | à        | ⊃          | Yes                   |
| trans-1,2-Dichloroethene    | 1.0    | ng/L       | 1.0             |          | ⊃          | Yes                   |
| 1,2-Dichloropropane         | 1.0    | ng/L       | 1.0             | ,        | D          | Yes                   |

| Yes                     | Yes                       | Yes          | Yes       | Yes        | Yes              | Yes                | Yes            | Yes            | Yes             | Yes               | Yes                | Yes                        | Yes                     | Yes     | Yes               | Yes                | Yes                       | Yes               | Yes             | Yes     | Yes                    | Yes                    | Yes                   | Yes                   | Yes             | Yes                    | Yes                    | Yes            | Yes        | Yes      |
|-------------------------|---------------------------|--------------|-----------|------------|------------------|--------------------|----------------|----------------|-----------------|-------------------|--------------------|----------------------------|-------------------------|---------|-------------------|--------------------|---------------------------|-------------------|-----------------|---------|------------------------|------------------------|-----------------------|-----------------------|-----------------|------------------------|------------------------|----------------|------------|----------|
| D                       | ח                         | ,            | ⊃         | o          | כ                | o                  | ⊃              | ⊃              | ⊃               | ⊃                 | ⊃                  | ⊃                          | r.                      | ⊃       | ⊃                 | •                  | כ                         | ⊃                 | D               | D       | n                      | n                      | J                     | ⊃                     | ס               | ⊃                      | ⊃                      | n              | n          | D        |
| 1                       | •                         | P            | ,         | ï          | r                | 1                  | ,              | 1              |                 |                   | ,                  | ï                          |                         |         | ì                 | C                  |                           | ī                 | 1               |         | ŗ                      | •                      | ×                     | į.                    | ,               | ï                      | 1                      | •              | ř          | ð        |
| 1.0                     | 1.0                       | 1.0          | 1.0       | 1.0        | 1.0              | 1.0                | 1.0            | 1.0            | 1.0             | 1.0               | 1.0                | 1.0                        | 1.0                     | 1.0     | 1.0               | 1.0                | 1.0                       | 1.0               | 1.0             | 1.0     | 1.0                    | 1.0                    | 1.0                   | 1.0                   | 1.0             | 1.0                    | 1.0                    | 1.0            | 1.0        | 1.0      |
| ng/L                    | ng/L                      | ng/L         | ng/L      | ng/L       | ug/L             | ng/L               | ng/L           | ng/L           | ng/L            | ng/L              | ng/L               | ng/L                       | ng/L                    | ng/L    | ng/L              | ng/L               | ng/L                      | ng/L              | ng/L            | ng/L    | ng/L                   | ng/L                   | ng/L                  | ng/L                  | ng/L            | ng/L                   | ng/L                   | ng/L           | ng/L       | ng/L     |
| 1.0                     | 1.0                       | 1.1          | 1.0       | 10         | 1.0              | 1.0                | 20             | 2.0            | 2.0             | 1.0               | 2.0                | 2.0                        | 21.6                    | 1.0     | 20                | 177                | 1.0                       | 1.0               | 5.0             | 1.0     | 2.0                    | 2.0                    | 1.0                   | 1.0                   | 1.0             | 2.0                    | 1.0                    | 1.0            | 2.0        | 1.0      |
| cis-1,3-Dichloropropene | trans-1,3-Dichloropropene | Ethylbenzene | Freon 113 | 2-Hexanone | Isopropylbenzene | p-Isopropyltoluene | Methyl Acetate | Methyl Bromide | Methyl Chloride | Methylcyclohexane | Methylene chloride | 4-Methyl-2-pentanone(MIBK) | Methyl Tert Butyl Ether | Styrene | Tert-Amyl Alcohol | Tert-Butyl Alcohol | 1,1,2,2-Tetrachloroethane | Tetrachloroethene | Tetrahydrofuran | Toluene | 1,2,3-Trichlorobenzene | 1,2,4-Trichlorobenzene | 1,1,1-Trichloroethane | 1,1,2-Trichloroethane | Trichloroethene | Trichlorofluoromethane | 1,2,4-Trimethylbenzene | Vinyl chloride | m,p-Xylene | o-Xylene |

Sample ID: FA34029-5 Sample location: BMSMC Building 5 Area

Sampling date: 4/11/2016 Matrix: AQ - Trip Blank Water

| Analyte Name                | Result | Units Diluti | Dilution Factor | Lab Flag | Validation  | Validation Reportable |  |
|-----------------------------|--------|--------------|-----------------|----------|-------------|-----------------------|--|
| Acetone                     | 25     | ng/L         | 1.0             | •        | O           | Yes                   |  |
| Benzene                     | 1.0    | ng/L         | 1.0             | •        | O           | Yes                   |  |
| Benzyl Chloride             | 2.0    | ng/L         | 1.0             | •        | O           | Yes                   |  |
| Bromochloromethane          | 1.0    | ng/L         | 1.0             | •        | J           | Yes                   |  |
| Bromodichloromethane        | 1.0    | ug/L         | 1.0             | ı        | >           | Yes                   |  |
| Bromoform                   | 1.0    | ng/L         | 1.0             | ı        | o           | Yes                   |  |
| 2-Butanone (MEK)            | 2.0    | ng/L         | 1.0             | •        | D           | Yes                   |  |
| Carbon disulfide            | 2.0    | ng/L         | 1.0             | ı        | )           | Yes                   |  |
| Carbon tetrachloride        | 1.0    | ug/L         | 1.0             | 1        | D           | Yes                   |  |
| Chlorobenzene               | 1.0    | ng/L         | 1.0             | 1        | _           | Yes                   |  |
| Chloroethane                | 2.0    | ng/L         | 1.0             | •        | 3           | Yes                   |  |
| Chloroform                  | 1.0    | ng/L         | 1.0             | 1        | D           | Yes                   |  |
| Cyclohexane                 | 1.0    | ng/L         | 1.0             | •        | D           | Yes                   |  |
| Dibromochloromethane        | 1.0    | ng/L         | 1.0             | 1        | <b>&gt;</b> | Yes                   |  |
| 1,2-Dibromo-3-chloropropane | 5.0    | ng/L         | 1.0             | •        | Ω           | Yes                   |  |
| 1,2-Dibromoethane           | 2.0    | ng/L         | 1.0             | 1        | ⊃           | Yes                   |  |
| Dichlorodifluoromethane     | 1.2    | ng/L         | 1.0             | ,        | כ           | Yes                   |  |
| 1,2-Dichlorobenzene         | 1.0    | ng/L         | 1.0             | ı        | )           | Yes                   |  |
| 1,3-Dichlorobenzene         | 1.0    | ng/L         | 1.0             | ŧ        | ⊃           | Yes                   |  |
| 1,4-Dichlorobenzene         | 1.0    | ng/L         | 1.0             | ı        | n           | Yes                   |  |
| 1,1-Dichloroethane          | 1.0    | ng/L         | 1.0             | ı        | ⊃           | Yes                   |  |
| 1,2-Dichloroethane          | 1.0    | ng/L         | 1.0             | 1        | ⊃           | Yes                   |  |
| 1,1-Dichloroethene          | 1.0    | ng/L         | 1.0             | 1        | D<br>D      | Yes                   |  |
| cis-1,2-Dichloroethene      | 1.0    | ng/L         | 1.0             | 1        | ⊃           | Yes                   |  |
| trans-1,2-Dichloroethene    | 1.0    | ug/L         | 1.0             | 1        | )           | Yes                   |  |
| 1,2-Dichloropropane         | 1.0    | ng/L         | 1.0             | ı        | )           | Yes                   |  |

|                         |                           |              |           |            |                  |                    |                |                |                 |                   |                    |                            |                         |         |                   |                    |                           |                   |                 |         |                        |                        |                       |                       |                 |                        |                        |                |            | ì        |
|-------------------------|---------------------------|--------------|-----------|------------|------------------|--------------------|----------------|----------------|-----------------|-------------------|--------------------|----------------------------|-------------------------|---------|-------------------|--------------------|---------------------------|-------------------|-----------------|---------|------------------------|------------------------|-----------------------|-----------------------|-----------------|------------------------|------------------------|----------------|------------|----------|
| Yes                     | Yes                       | Yes          | Yes       | Yes        | Yes              | Yes                | Yes            | Yes            | Yes             | Yes               | Yes                | Yes                        | Yes                     | Yes     | Yes               | Yes                | Yes                       | Yes               | Yes             | Yes     | Yes                    | Yes                    | Yes                   | Yes                   | Yes             | Yes                    | Yes                    | Yes            | Yes        | Yes      |
| n                       | ⊃                         | <b>&gt;</b>  | ⊃         | D          | D                | o                  | ⊃              | D              | J               | <b>-</b>          | <b>D</b>           | כ                          | ⊃                       | ⊃       | ⊃                 | ם                  | ס                         | ⊃                 | ם               | ⊃       | D                      | o                      | ⊃                     | ⊃                     | ח               | D                      | D                      | ⊃              | ⊃          | D        |
| 1                       |                           | x            | 1         | ï          | e                |                    |                | c              | 9               | r                 | τ                  | ā                          | c                       | ä       | ,                 |                    | ٠,                        | ٠                 |                 | 5       | v                      | a                      | 4                     | •                     | i a             |                        | ř.                     | Y              | 71         | 1        |
| 1.0                     | 1.0                       | 1.0          | 1.0       | 1.0        | 1.0              | 1.0                | 1.0            | 1.0            | 1.0             | 1.0               | 1.0                | 1.0                        | 1.0                     | 1.0     | 1.0               | 1.0                | 1.0                       | 1.0               | 1.0             | 1.0     | 1.0                    | 1.0                    | 1.0                   | 1.0                   | 1.0             | 1.0                    | 1.0                    | 1.0            | 1.0        | 1.0      |
| ng/L                    | ng/L                      | ng/L         | ng/L      | ng/L       | ng/L             | ng/L               | ng/L           | ng/L           | ng/L            | ng/L              | ng/L               | ug/L                       | ng/L                    | ug/L    | ng/L              | ng/L               | ng/L                      | ng/L              | ng/L            | ng/L    | ng/L                   | ng/L                   | ng/L                  | ng/L                  | ng/L            | ng/L                   | ng/L                   | ng/L           | ng/L       | ng/L     |
| 1.0                     | 1.0                       | 1.0          | 1.0       | 10         | 1.0              | 1.0                | 20             | 2.0            | 2.0             | 1.0               | 2.0                | 2.0                        | 1.0                     | 1.0     | 20                | 20                 | 1.0                       | 1.0               | 2.0             | 1.0     | 2.0                    | 2.0                    | 1.0                   | 1.0                   | 1.0             | 2.0                    | 1.0                    | 1.0            | 2.0        | 1.0      |
|                         |                           |              |           |            |                  |                    |                |                |                 |                   |                    |                            |                         |         |                   |                    |                           |                   |                 |         |                        |                        |                       |                       |                 |                        |                        |                |            |          |
| cis-1,3-Dichloropropene | trans-1,3-Dichloropropene | Ethylbenzene | Freon 113 | 2-Hexanone | Isopropylbenzene | p-isopropyitoluene | Methyl Acetate | Methyl Bromide | Methyl Chloride | Methylcyclohexane | Methylene chloride | 4-Methyl-2-pentanone(MIBK) | Methyl Tert Butyl Ether | Styrene | Tert-Amyl Alcohol | Tert-Butyl Alcohol | 1,1,2,2-Tetrachloroethane | Tetrachloroethene | Tetrahydrofuran | Toluene | 1,2,3-Trichlorobenzene | 1,2,4-Trichlorobenzene | 1,1,1-Trichloroethane | 1,1,2-Trichloroethane | Trichloroethene | Trichlorofluoromethane | 1,2,4-Trimethylbenzene | Vinyl chloride | m,p-Xylene | o-Xylene |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project Number:_FA34029                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date:May_17,_2016                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Shipping date:May_17,_2016                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA Region:2                                                                                                                                                                                                                                                                         |
| REVIEW OF VOLATILE OR Low/Medium Volatile D                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                      |
| The following guidelines for evaluating volatile orgalidation actions. This document will assist the review more informed decision and in better serving the needs assessed according to USEPA data validation guide precedence: USEPA Hazardous Waste Support SOM02.2. Low/Medium Volatile Data Validation. July actions listed on the data review worksheets are frootherwise noted.  The hardcopied (laboratory name)Accutest been reviewed and the quality control and performa VOCs included: | wer in using professional judgment to make s of the data users. The sample results were lance documents in the following order of Section SOP No. HW-33A Revision 0 ly, 2015. The QC criteria and data validation om the primary guidance document, unless data package received has |
| Lab. Project/SDG No.:FA34029                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample matrix:Groundwater                                                                                                                                                                                                                                                            |
| No. of Samples:5_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                    |
| Trip blank No.:FA34029-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |
| Field blank No.:FA34029-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |
| Field duplicate No.: FA34029-1/FA34029-2                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| X Data Completeness<br>X Holding Times                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X Laboratory Control Spikes<br>X Field Duplicates                                                                                                                                                                                                                                    |
| X Floiding Times<br>X GC/MS Tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X Field Duplicates<br>X Calibrations                                                                                                                                                                                                                                                 |
| X Internal Standard Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X Compound Identifications                                                                                                                                                                                                                                                           |
| X Blanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X Compound Quantitation                                                                                                                                                                                                                                                              |
| X Surrogate Recoveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X Quantitation Limits                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |

**Definition of Qualifiers:** Estimated results

U-Compound not detected

\_X\_\_\_ Matrix Spike/Matrix Spike Duplicate

R-Rejected data UJ-

Estimated nondetect /

Reviewer: Date:\_\_\_May\_28,\_2016

\_OverallComments: \_\_\_VOA\_TCL\_list\_(SW846\_8260C)

### **DATA REVIEW WORKSHEETS**

### DATA COMPLETENESS

| MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     | White the second |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | 71                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| All criteria were met _ | Х_ |  |
|-------------------------|----|--|
| Criteria were not mel   |    |  |
| and/or see below        |    |  |

### HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID         | DATE SAMPLED           | DATE ANALYZED         | pН        | ACTION                       |
|-------------------|------------------------|-----------------------|-----------|------------------------------|
|                   |                        |                       |           |                              |
|                   |                        |                       |           |                              |
| Samples analyzed  | d within method reco   | mmended holding time  | e except  | for sample FA34029-5 that    |
| was received and  | analyzed outside the   | holding time. The san | nple is a | Trip Blank, no action taken. |
| Sample preservati | on within required cri | tena.                 |           |                              |
|                   |                        |                       |           |                              |
|                   |                        |                       |           |                              |
|                   |                        |                       |           |                              |

### Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH  $\leq$  2, 4 $\pm$  2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 3.3° C - OK

### Actions

### Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T = 4°C  $\pm$  2°C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (UJ) and non-detected compounds as estimated (UJ).

### Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C  $\pm$  2°C and preserved with NaHSO<sub>4</sub>), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

### **Qualify TCLP/SPLP samples**

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

|             |                              |           |                                     | Action                                  |
|-------------|------------------------------|-----------|-------------------------------------|-----------------------------------------|
| Matrix      | Preserved Criteria           |           | Detected<br>Associated<br>Compounds | Non-Detected<br>Associated<br>Compounds |
|             |                              |           |                                     |                                         |
|             | No ≤ 7 days No qualification |           | ualification                        |                                         |
| Aguagua     | No                           | > 7 days  | J                                   | R                                       |
| Aqueous     | Yes                          | ≤ 14 days | days No qualification               |                                         |
|             | Yes                          | > 14 days | J                                   | R                                       |
| Nau Aguana  | No                           | ≤ 14 days | J                                   | Professional judgment,<br>UJ or R       |
| Non-Aqueous | Yes                          | ≤ 14 days | No q                                | ualification                            |
|             | Yes/No                       | > 14 days | J                                   | R                                       |
| TCLP/SPLP   | Yes                          | ≤ 14 days | No q                                | ualification                            |
| TCLP/SPLP   | No                           | > 14 days | J                                   | R                                       |

| TCLP/SPLP                                                           | ZHE performed within<br>the 14-day technical<br>holding time  | No qualification          |   |
|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------|---|
| TCLP/SPLP                                                           | ZHE performed outside<br>the 14-day technical<br>holding time | J                         | R |
| TCLP/SPLP<br>aqueous &<br>TCLP/SPLP<br>leachate                     | Analyzed within 7 days                                        | No qualification          |   |
| TCLP/SPLP<br>aqueous &<br>TCLP/SPLP<br>leachate                     | Analyzed outside 7 days                                       | J                         | R |
| Sample temperature outside 4°C ± 2°C upon receipt at the laboratory |                                                               | Use professional judgment |   |
| Holding times g                                                     | rossly exceeded                                               | J                         | R |

| All criteria were met _X_       |  |
|---------------------------------|--|
| Criteria were not met see below |  |

### GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

\_\_X\_\_\_The BFB performance results were reviewed and found to be within the specified criteria.
\_\_X\_\_\_BFB tuning was performed for every 12 hours of sample analysis.

**NOTES:** All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

**NOTES:** No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

### Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

**Note:** State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

### **DATA REVIEW WORKSHEETS**

|      | mass calibration compound |         |           |
|------|---------------------------|---------|-----------|
| List | the                       | samples | affected: |
|      |                           |         |           |
|      |                           |         |           |
|      |                           |         |           |
|      |                           |         |           |
|      |                           |         |           |
|      |                           |         |           |

| Criteria were not met |  |
|-----------------------|--|
| and/or see belowX     |  |

### CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:     | 05/12/16           |
|----------------------------------|--------------------|
| Dates of continuing (initial) ca | libration:05/12/16 |
| Dates of continuing calibration  | n:05/18/16         |
| Dates of ending calibration:     | 05/12/16;_05/18/16 |
| Instrument ID numbers:           | GCMSJ              |
| Matrix/Level:                    | _Aqueous/low       |

| DATE     | LAB FILE iD# | CRITERIA OUT<br>RFs, %RSD, <u>%D</u> , r | COMPOUND     | SAMPLES<br>AFFECTED                      |
|----------|--------------|------------------------------------------|--------------|------------------------------------------|
| GCMSJ    |              |                                          | •            |                                          |
| 05/18/16 | cc5295-5     | -52.7                                    | Chloroethane | FA34029-1 to -5<br>FA34029-1MS/-<br>1MSD |
|          |              |                                          |              |                                          |
|          |              |                                          | 1            |                                          |

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the validation guidance document required criteria except the cases described above. Chloroethane result qualified as estimated (UJ) in affected samples.

Closing calibration check verification included in data package.

### Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

| Analyte                               | Minimum | Maximum | Opening     | Closing    |
|---------------------------------------|---------|---------|-------------|------------|
| <u> </u>                              | RRF     | %RSD    | Maximum %D1 | Maximum %D |
| Dichlorodifluoromethane               | 0.010   | 25.0    | ±40.0       | ±50.0      |
| Chloromethane                         | 0.010   | 20.0    | ±30.0       | ±50.0      |
| Vinyl chloride                        | 0.010   | 20.0    | ±25.0       | ±50.0      |
| Bromomethane                          | 0.010   | 40.0    | ±30.0       | ±50.0      |
| Chloroethane                          | 0.010   | 40.0    | ±25.0       | ±50.0      |
| Trichlorofluoromethane                | 0.010   | 40.0    | ±30.0       | ±50.0      |
| 1,1-Dichloroethene                    | 0.060   | 20.0    | ±20.0       | ±25.0      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.050   | 25.0    | ±25.0       | ±50.0      |
| Acetone                               | 0.010   | 40.0    | ±40.0       | ±50.0      |
| Carbon disulfide                      | 0.100   | 20.0    | ±25.0       | ±25.0      |
| Methyl acetate                        | 0.010   | 40.0    | ±40.0       | ±50.0      |
| Methylene chloride                    | 0.010   | 40.0    | ±30.0       | ±50.0      |
| trans-1.2-Dichloroethene              | 0.100   | 20.0    | ±20.0       | ±25.0      |
| Methyl tert-butyl ether               | 0.100   | 40.0    | ±25.0       | ±50.0      |
| 1,1-Dichloroethane                    | 0.300   | 20.0    | ±20.0       | ±25.0      |
| cis-1,2-Dichloroethene                | 0.200   | 20.0    | ±20.0       | ±25.0      |
| 2-Butanone                            | 0.010   | 40.0    | ±40.0       | ±50.0      |
| Bromochloromethane                    | 0.100   | 20.0    | ±20.0       | ±25.0      |
| Chloroform                            | 0.300   | 20.0    | ±20.0       | ±25.0      |
| 1,1,1-Trichloroethane                 | 0.050   | 20.0    | ±25.0       | ±25.0      |
| Cyclohexane                           | 0.010   | 40.0    | ±25.0       | ±50.0      |
| Carbon tetrachloride                  | 0.100   | 20.0    | ±25.0       | ±25.0      |
| Benzene                               | 0.200   | 20.0    | ±20.0       | ±25.0      |
| 1,2-Dichloroethane                    | 0.070   | 20.0    | ±20.0       | ±25.0      |
| Trichloroethene                       | 0.200   | 20.0    | ±20.0       | ±25.0      |
| Methylcyclohexane                     | 0.050   | 40.0    | ±25.0       | ±50.0      |
| 1,2-Dichloropropane                   | 0.200   | 20.0    | ±20.0       | ±25.0      |
| Bromodichloromethane                  | 0.300   | 20.0    | ±20.0       | ±25.0      |
| cis-1,3-Dichloropropene               | 0.300   | 20.0    | ±20.0       | ±25.0      |
| 4-Methyl-2-pentanone                  | 0.030   | 25.0    | ±30.0       | ±50.0      |
| Toluene                               | 0.300   | 20.0    | ±20.0       | ±25.0      |
| trans-1,3-Dichloropropene             | 0.200   | 20.0    | ±20.0       | ±25.0      |
| 1,1,2-Trichloroethane                 | 0.200   | 20.0    | ±20.0       | ±25.0      |
| Tetrachloroethene                     | 0.100   | 20.0    | ±20.0       | ±25.0      |
| 2-Hexanone                            | 0.010   | 40.0    | ±40.0       | ±50.0      |
| Dibromochloromethane                  | 0.200   | 20.0    | ±20.0       | ±25.0      |
| 1,2-Dibromoethane                     | 0.200   | 20.0    | ±20.0       | ±25.0      |
| Chlorobenzene                         | 0.400   | 20.0    | ±20.0       | ±25.0      |
| Ethylbenzene                          | 0.400   | 20.0    | ±20.0       | ±25.0      |

| Analyte                               | Minimum<br>RRF | Maximum<br>%RSD | Opening Maximum %D <sup>1</sup> | Closing<br>Maximum |
|---------------------------------------|----------------|-----------------|---------------------------------|--------------------|
| m.p-Xylene                            | 0.200          | 20.0            | ±20.0                           | ±25.0              |
| o-Xylene                              | 0.200          | 20.0            | ±20.0                           | ±25.0              |
| Styrene                               | 0.200          | 20.0            | ±20.0                           | ±25.0              |
| Bromoform                             | 0.100          | 20.0            | ±25.0                           | ±50.0              |
| Isopropylbenzene                      | 0.400          | 20.0            | ±25.0                           | ±25.0              |
| 1.1.2.2-Tetrachloroethane             | 0.200          | 20.0            | ±25.0                           | ±25.0              |
| 1,3-Dichlorobenzene                   | 0.500          | 20.0            | ±20.0                           | ±25.0              |
| 1,4-Dichlorobenzene                   | 0.600          | 20.0            | ±20.0                           | ±25.0              |
| 1,2-Dichlorobenzene                   | 0.600          | 20.0            | ±20.0                           | ±25.0              |
| 1,2-Dibromo-3-chloropropane           | 0.010          | 25.0            | ±30.0                           | ±50.0              |
| 1,2,4-Trichlorobenzene                | 0.400          | 20.0            | ±30.0                           | ±50.0              |
| 1,2,3-Trichlorobenzene                | 0.400          | 25.0            | ±30.0                           | ±50.0              |
| <b>Deuterated Monitoring Compound</b> | ,              |                 |                                 |                    |
| Vinyl chloride-d3                     | 0.010          | 20.0            | ±30.0                           | ±50.0              |
| Chloroethane-ds                       | 0.010          | 40.0            | ±30.0                           | ±50.0              |
| 1,1-Dichloroethene-d2                 | 0.050          | 20.0            | ±25.0                           | ±25.0              |
| 2-Butanone-ds                         | 0.010          | 40.0            | ±40.0                           | ±50.0              |
| Chloroform-d                          | 0.300          | 20.0            | ±20.0                           | ±25.0              |
| 1,2-Dichloroethane-d4                 | 0.060          | 20.0            | ±25.0                           | ±25.0              |
| Benzene-da                            | 0.300          | 20.0            | ±20.0                           | ±25.0              |
| 1,2-Dichloropropane-de                | 0.200          | 20.0            | ±20.0                           | ±25.0              |
| Toluene-ds                            | 0.300          | 20.0            | ±20.0                           | ±25.0              |
| trans-1,3-Dichloropropene-d4          | 0.200          | 20.0            | ±20.0                           | ±25.0              |
| 2-Hexanone-ds                         | 0.010          | 40.0            | ±40.0                           | ±50.0              |
| 1,1,2,2-Tetrachloroethane-d2          | 0.200          | 20.0            | ±25.0                           | ±25.0              |
| 1,2-Dichlorobenzene-d4                | 0.400          | 20.0            | ±20.0                           | ±25.0              |

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

### Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
  - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
  - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
  - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
  - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
    - i. Qualify detects for that compound(s) as estimated (J).
    - ii. Qualify non-detected volatile target compounds using professional judgment.
  - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
    - i. Qualify detects outside of the linear portion of the curve as estimated (J).
    - ii. No qualifiers are required for detects in the linear portion of the curve.
    - iii. No qualifiers are required for volatile target compounds that were not detected.
  - c. If the low-point of the curve is outside of the linearity criteria:
    - Qualify low-level detects in the area of non-linearity as estimated (J).
    - ii. No qualifiers are required for detects in the linear portion of the curve.
    - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

**Note:** If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

| Criteria                                                              | Action                                  |                                   |  |
|-----------------------------------------------------------------------|-----------------------------------------|-----------------------------------|--|
| Criteria                                                              | Detect                                  | Non-detect                        |  |
| Initial Calibration not performed at specified frequency and sequence | Use professional<br>judgment<br>R       | Use professional<br>judgment<br>R |  |
| Initial Calibration not performed at the specified concentrations     | J                                       | UJ                                |  |
| RRF Minimum RRF in Table for target analyte                           | Use professional<br>judgment<br>J+ or R | R                                 |  |
| RRF > Minimum RRF in Table for target analyte                         | No qualification                        | No qualification                  |  |
| *•RSD = Maximum *•RSD in Table<br>for target analyte                  | 1                                       | Use professional                  |  |
| *•RSD = Maximum *•RSD in Table<br>for target analyte                  | No qualification                        | No qualification                  |  |

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

### Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

### Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
  - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
  - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
  - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
  - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
  - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

### **DATA REVIEW WORKSHEETS**

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

| Criteria for Opening       | Criteria for        | Action           |                  |
|----------------------------|---------------------|------------------|------------------|
| CCV                        | Closing CCV         | Detect           | Non-detect       |
| CCV not performed          | CCV not performed   | Use professional | Use professional |
| at required frequency      | at required         | judgment         | judgment         |
|                            | frequency           | R                | R                |
| CCV not performed          | CCV not performed   | Use professional | Use professional |
| at specified               | at specified        | judgment         | judgment         |
| concentration              | concentration       |                  |                  |
| RRF < Minimum              | RRF < Minimum       | Use professional | R                |
| RRF in Table 2 for         | RRF in Table for    | judgment         |                  |
| target analyte             | target analyte      | J or R           |                  |
| RRF   Minimum              | RRF ≥ Minimum       | No qualification | No qualification |
| RRF in Table 2 for         | RRF in Table for    |                  |                  |
| target analyte             | target analyte      |                  |                  |
| <sup>o</sup> D outside the | %D outside the      | J                | UJ               |
| Opening Maximum            | Closing Maximum     |                  |                  |
| ° D limits in Table 2      | %D limits in Table  |                  |                  |
| for target analyte         | for target analyte  |                  |                  |
| %D within the              | %D within the       | No qualification | No qualification |
| inclusive Opening          | inclusive Closing   |                  | -                |
| Maximum %D limits          | Maximum %D          |                  |                  |
| in Table 2 for target      | limits in Table for |                  |                  |
| analyte                    | target analyte      |                  |                  |

| All criteria were metX | _ |
|------------------------|---|
| Criteria were not met  |   |
| and/or see below       |   |

## BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be  $\leq 5.0 \,\mu\text{g/L}$  for water (0.0050 mg/L for TCLP leachate) and  $\leq 5.0 \,\mu\text{g/kg}$  for soil matrices.

## Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

| DATE<br>ANALYZED                        | LAB ID          | LEVEL/<br>MATRIX  | COMPOUND                 | CONCENTRATION UNITS          |
|-----------------------------------------|-----------------|-------------------|--------------------------|------------------------------|
| No_target_ana                           | lyte_detected_i | n_method_blan     | ks                       |                              |
| Field/ <u>Equipmer</u>                  | t/Trip blank    |                   |                          |                              |
| If field or trip bla<br>the method blan |                 | t, the data revie | wer should evaluate this | data in a similar fashion as |
| DATE<br>ANALYZED                        | LAB ID          | LEVEL/<br>MATRIX  | COMPOUND                 | CONCENTRATION UNITS          |
|                                         |                 |                   |                          | _for_this_data_package       |
| 8-21                                    |                 |                   |                          |                              |

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

## BLANK ANALYSIS RESULTS (Section 3)

#### Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

| Blank Type      | Blank Result     | Sample Result       | Action for Samples            |
|-----------------|------------------|---------------------|-------------------------------|
|                 | Detects          | Not detected        | No qualification required     |
|                 | < CRQL *         | < CRQL*             | Report CRQL value with a U    |
|                 | CKQL             | ≥CRQL*              | No qualification required     |
| Method,         |                  | < CRQL*             | Report CRQL value with a U    |
| Storage, Field, |                  | ≥ CRQL* and ≤       | Report blank value for sample |
| Trip,           | Trip,   > CRQL * | blank concentration | concentration with a U        |
| -TCLP/SPLP      |                  | ≥ CRQL* and >       | No qualification required     |
| LEB,            |                  | blank concentration | 140 quantication required     |
| Instrument**    | = CRQL*          | ≤CRQL*              | Report CRQL value with a U    |
|                 | CRQL             | > CRQL*             | No qualification required     |
|                 | Gross            | Detects             | Report blank value for sample |
|                 | contamination    | Detects             | concentration with a U        |

<sup>\* 2</sup>x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

<sup>\*\*</sup> Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100  $\mu$ g/L.

## Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

| CONTAMINATION SOURCE/LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COMPOUND              | CONC/UNITS | AL/UNITS | SQL                    | AFFECTED SAMPLES |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|----------|------------------------|------------------|
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |            |          |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |          |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |          | AND THE REAL PROPERTY. |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            | 1000000  | 1                      |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            | Med So   |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |          |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 450        |          |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            | _        |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second |            |          |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |          |                        |                  |
| - The state of the |                       |            |          |                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |          |                        |                  |

| All criteria were met _X |  |
|--------------------------|--|
| Criteria were not met    |  |
| and/or see below         |  |

## DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

| DMC                    | %R for Water Sample | %R for Soil Sample |
|------------------------|---------------------|--------------------|
| Vinyl chloride-d3      | 60-135              | 30-150             |
| Chloroethane-d5        | 70-130              | 30-150             |
| 1,1-Dichloroethene-d2  | 60-125              | 45-110             |
| 2-Butanone-d5          | 40-130              | 20-135             |
| Chloroform-d           | 70-125              | 40-150             |
| 1,2-Dichloroethane-d4  | 70-125              | 70-130             |
| Benzene-d6             | 70-125              | 20-135             |
| 1,2-Dichloropropane-d6 | 70-120              | 70-120             |
| Toluene-d8             | 80-120              | 30-130             |
| trans-1,3-             | 60-125              | 30-135             |
| Dichloropropene-d4     |                     |                    |
| 2-Hexanone-d5          | 45-130              | 20-135             |
| 1,1,2,2-               | 65-120              | 45-120             |
| Tetrachloroethane-d2   |                     |                    |
| 1,2-Dichlorobenzene-d4 | 80-120              | 75-120             |

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

## Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID

Date

**DMCs** 

% Recovery

Action

DMCs recoveries within the required limits. Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

#### Action:

- 1. For any recovery greater than the upper acceptance limit:
  - a. Qualify detected associated volatile target compounds as estimated high (J+).
  - Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
  - a. Qualify detected associated volatile target compounds as estimated low (J-).
  - Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
  - a. Qualify detected associated volatile target compounds as estimated low (J-).
  - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

|                                                      | Action                         |                                   |  |  |
|------------------------------------------------------|--------------------------------|-----------------------------------|--|--|
| Criteria                                             | Detect Associated<br>Compounds | Non-detected Associated Compounds |  |  |
| %R < 10%                                             | J-                             | R                                 |  |  |
| 10% ≤ %R < Lower Acceptance Limit                    | J-                             | UJ                                |  |  |
| Lower Acceptance Limit ≤ %R ≤ Upper Acceptance Limit | No qualification               | No qualification                  |  |  |
| %R > Upper Acceptance Limit                          | J+                             | No qualification                  |  |  |

# TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

| Vinyl chloride-ds (DMC-1)                                                                                                                               | Chloroethane-ds (DMC-2)                                                                      | 1,1-Dichloroethene-d2 (DMC-3)                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vinyl chloride                                                                                                                                          | Dichlorodifluoromethane<br>Chloromethane<br>Bromomethane<br>Chloroethane<br>Carbon disulfide | trans-1,2-Dichloroethene<br>cis-1,2-Dichloroethene<br>1,1-Dichloroethene                                                                                                                               |
| 2-Butanone-ds (DMC-4)                                                                                                                                   | Chloroform-d (DMC-5)                                                                         | 1,2-Dichloroethane-d4 (DMC-6)                                                                                                                                                                          |
| Acetone 2-Butanone                                                                                                                                      | 1,1-Dichloroethane Bromochloromethane Chloroform Dibromochloromethane Bromoform              | Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane Methyl acetate Methylene chloride Methyl-tert-butyl ether 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dibromoethane 1,2-Dichloroethane |
| Benzene-ds (DMC-7)                                                                                                                                      | 1,2-Dichloropropane-ds (DMC-8)                                                               | Toluene-ds (DMC-9)                                                                                                                                                                                     |
| Benzene                                                                                                                                                 | Cyclohexane Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane                       | Trichloroethene Toluene Tetruchloroethene Ethylbenzene o-Xylene m.p-Xylene Styrene Isopropylbenzene                                                                                                    |
| trans-1,3-Dichloropropene-da<br>(DMC-10)                                                                                                                | 2-Hexanone-ds (DMC-11)                                                                       | 1,1,2,2-Tetrachloroethane-d2<br>(DMC-12)                                                                                                                                                               |
| cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane                                                                           | 4-Methyl-2-pentanone<br>2-Hexanone                                                           | 1.1,2,2,-Tetrachloroethane<br>1.2-Dibromo-3-chloropropane                                                                                                                                              |
| 1,2-Dichlorobenzene-da (DMC-13) Chlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene |                                                                                              |                                                                                                                                                                                                        |

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

## MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the

Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the

MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

#### 1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

| Sample ID:_FA | \33788-1MS/1MSD      | _        | Matrix | /Level:   | Aqueous           |
|---------------|----------------------|----------|--------|-----------|-------------------|
| MS OR MSD     | COMPOUND             | % R      | RPD    | QC LIMITS | ACTION            |
| _MSDD         | ibromochloromethane_ | 77_%_    |        | 78122     | Result_in_sample_ |
| _MS/MSDte     | ert-Butyl_Alcohol    | _140/143 | _%     | 63129     | FA34029-1         |
|               |                      |          |        |           | qualified_(J)_or  |
|               |                      |          |        |           | (UJ)              |

<sup>\*</sup> QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

<sup>\*</sup> If QC limits are not available, use limits of 70 – 130 %.

#### Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

| All criteria were metX |  |
|------------------------|--|
| Criteria were not met  |  |
| and/or see below       |  |

## LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

#### 1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

|                | LCS ID         | COMPOUND                     | % R     | QC LIMIT |
|----------------|----------------|------------------------------|---------|----------|
| Recoverie      | s_(blank_spike | e)_within_laboratory_control | _limits | ·        |
|                |                |                              |         |          |
|                |                |                              | n in    |          |
| \$ = 3% = MIC. |                |                              |         |          |
|                |                |                              |         |          |
|                |                |                              |         |          |

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

#### Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

## 2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

#### IX. FIELD/LABORATORY DUPLICATE PRECISION

| Sample IDs: _FA34029-1/FA34029-2 | //atrix:_Groundwater |
|----------------------------------|----------------------|
|----------------------------------|----------------------|

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

**NOTE:** In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

| COMPOUND      | SQL                                                                                             | SAMPLE CONC. | DUPLICATE CONC.        | RPD | ACTION |
|---------------|-------------------------------------------------------------------------------------------------|--------------|------------------------|-----|--------|
|               |                                                                                                 |              |                        |     |        |
|               |                                                                                                 |              |                        |     | •      |
| Field duplica | Field duplicate analyzed for this data package. RPD within required criteria, < 50 % for target |              |                        |     |        |
| ,             | •                                                                                               |              | ed above the reporting |     |        |
|               |                                                                                                 | -            |                        |     |        |
|               |                                                                                                 |              |                        |     |        |

#### Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

## X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts within the required criteria.

#### **Action:**

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
  - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
  - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
  - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
  - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

## Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

|                                                                                                                                | Action                               |                                          |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|
| Criteria                                                                                                                       | Detected<br>Associated<br>Compounds* | Non-detected<br>Associated<br>Compounds* |
| Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)                            | J-                                   | No<br>qualification                      |
| Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)                             |                                      |                                          |
| Area counts $\geq 50\%$ but $\leq 200\%$ of 12-hour standard (opening CCV or mid-point standard from initial calibration)      | No qualification                     |                                          |
| RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration) | R **                                 | R                                        |
| RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration) | No qual                              | ification                                |

<sup>\*</sup> For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf

<sup>\*\*</sup> Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

|               |                                                                                                                                                                                                                                                                                                                                                                 | All criteria were metX Criteria were not met and/or see below                                       |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| TARGET COM    | POUND IDENTIFICATION                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |
| Criteria:     |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |
|               | [opening Continuing Calibration Verificat                                                                                                                                                                                                                                                                                                                       | ompounds within ±0.06 RRT units of the ion (CCV) or mid-point standard from the <u>Yes</u> ? or No? |
| List compound | s not meeting the criteria described above                                                                                                                                                                                                                                                                                                                      | :                                                                                                   |
| Sample ID     | Compounds                                                                                                                                                                                                                                                                                                                                                       | Actions                                                                                             |
|               |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |
|               |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |
|               |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |
|               |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |
| spectrum from | the associated calibration standard (oper<br>ust match according to the following criteria.<br>All ions present in the standard mass signs 10% must be present in the sample spectra.<br>The relative intensities of these ions standard and sample spectra (e.g., for standard spectrum, the corresponding 30-70%).<br>Ions present at greater than 10% in the | pectrum at a relative intensity greater than                                                        |
| List compound | s not meeting the criteria described above                                                                                                                                                                                                                                                                                                                      | :                                                                                                   |
| Sample ID     | Compounds                                                                                                                                                                                                                                                                                                                                                       | Actions                                                                                             |
|               |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |

#### Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

## TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

#### List TICs

| Sample ID   | Compound | Sample ID | Compound |
|-------------|----------|-----------|----------|
| =========== |          |           |          |
| V &         |          |           |          |
|             |          |           |          |
|             |          |           |          |

## Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
  - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
  - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

| All criteria were met _ | _X |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        |    |

# SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

#### Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

| Criteria                 | Action                                                          |    |  |
|--------------------------|-----------------------------------------------------------------|----|--|
|                          | Detected Associated Compounds Non-detected Associated Compounds |    |  |
| % Moisture < 70.0        | No qualification                                                |    |  |
| 70.0 < % Moisture < 90.0 | J                                                               | UJ |  |
| % Moisture > 90.0        | J                                                               | R  |  |

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA34029-1

MTBE

RF = 0.733

[] = (596190)(50)/(0.733)(1065127) = 38.2 ppb Ok

| B. | Percent Solids                        |  |
|----|---------------------------------------|--|
|    | List samples which have ≥ 70 % solids |  |
|    |                                       |  |
|    |                                       |  |
|    |                                       |  |
|    |                                       |  |

| All criteria were met _ | X_ |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        |    |

## **QUANTITATION LIMITS**

## A. Dilution performed

| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DILUTION FACTOR | REASON FOR DILUTION |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 100000              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 000           |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | -                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 5 (000F) 37F        |
| The state of the s |                 | <u></u>             |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                     |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                     |

| B. | Percent Solids                        |  |   |  |  |
|----|---------------------------------------|--|---|--|--|
|    | List samples which have ≥ 70 % solids |  |   |  |  |
|    | ii e                                  |  | V |  |  |
|    |                                       |  |   |  |  |
|    |                                       |  |   |  |  |
|    |                                       |  |   |  |  |
|    |                                       |  |   |  |  |
|    |                                       |  |   |  |  |